彭埠镇,张高兴又🅺🋤开始了晨起卖茶叶蛋🚊的日子。

    茶叶蛋卖完之后,🅺🋤他就捡起课本,在赵高红的指导下,他突飞猛进,由先前的不上道,到已经喜欢上了。

    现在他已经学习到初三的知识了,这年代那些习题还没🁳有开发得弯弯绕绕,🅻🋳很多知识也不如后世复杂,都是最基本的,张高兴🝲这年轻的脑袋在开悟之后学习得很快。

    不像是老了的时候半天脑经转不过弯来,现在脑袋灵光得🌻很,加上☂☋不学外🎨📩语,没有什么乱七八糟的其他要学习的,他只是学习几门课程,能不快吗?

    因为最早的高考是没有🚘外语,除非你要报考英语专业,不然是不用学习外语,这让张高兴少很多的学习量。🋊🗧🞀

    不过🏿这年代数学里面特别分出来一🃼门课🚊叫《几何》。

    现在赵高红正在教他几何。

    从直线,射线,🝵🏟线段到平行线,角,三角函数。

    现在他学的是勾股定理。

    小赵老师讲得让张高兴同学听得很有意思,因为她讲得很有趣味性,就是数学🆽🕄🇇课都💜💬🔸给你讲成故事课⚪🔑。

    什么是勾股定律。

    在年的一个周末的晚上,有一位中年人叫做加菲尔德的,🌻他散步欣赏着黄昏的美景,他发现两个小孩正在讨论着什么,看到他们在地上画画了三角形,于是这位同志问两个小孩,你们在干什么?

    一个男孩头说🁔道“请问,如果直角三角形的两条💶🖘💹直角边分别为三🕓🉌和四,那么斜边长多少?”

    中年同志回答“是五。”

    其中一个小男🁔孩又🅺🋤问道“如果两条🃼直角边是和,那么这个直角三角形的斜边长又是多少。”

    那中年同志不假思索地道“那🈋斜边的平方一定等于的🌬平方和的平方。”

    小男孩问道“那您知道其中的道理吗?”

    中年同志一时语塞,无法解🐗⛣🜏释了,心里很不是滋味,于是他回家,潜心研究,他经过仿佛的思考和推算,终于弄清楚其中的道理,并给🕅🇍🗎出了简洁的证明方法。

    这位中年同志是一位数学家出身的总统,他在数学方面的贡献就是在🄹🂜勾股定律方面的证明的成就……

    “你看看你能证明勾🕷股定律不🈋?”赵高红一副考验张高兴得模样说道。

    “我要能自己🁔立马证明出来,那我不是比数学家总统🌬还厉害。”张高兴使劲滴眨巴眼睛。

    “好吧。”赵高红可爱地吐出舌头。

    高兴哥怎么就不被套路啊。

    在🂾🔘她当时学🖤🔩🃎习这个的时候,那老师就鼓励同学们自己去证明🏲🝿,那些学生一个个都是跃跃欲试地证明自己的聪明……

    没办法,年轻人特别是十几岁的人太喜欢盲目自信了,觉得自己的聪明天下无敌,张高兴算是身体上是十几岁,但是心理上早已经不是十几岁的孩🚓子了,他才不会盲目自信自己无敌,他早已经认识到自己知识上的欠缺,特别后世那个日益爆炸的科技时代的摧残,很多东西他都不懂到底是怎么运作的,那些电脑,手机,那么小的玩意怎么就无所不能了,那些硬件,软件对于他感觉高大上,让他自信程度低到尘埃里。